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ABSTRACT 

This paper considers adaptive control systems which have nonlinear 

controllers with storage .Staircase techniques have been used to derive the 

optimizing equations for calculating the optimum parameters  of the compen- 

sator  for the least mean square e r ro r  between the actual output and the de- 

s i r ed  output in t e rms  of the statistical properties of the input signal and the 

plant dynamics. 

An example of an input-adaptive system has been calculated showing 

the superior performance of a power-series controller with storage over 

the optimum linear controller, a s  well as  the optimum power-series controller 

without storage. 
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INTRODUCTION 

In a recent report '  the theory 

compensation was developed by using 

of adaptive systems with nonlinear 

s ta i rcase techniques. The con- 

ventional linear Compensator, with variable coefficients, normally used 

for modification in an adaptive system was replaced by an instantaneous 

(no-storage) nonlinear compensator. Optimum coefficients for this non- 

linear compensator were calculated from the statist ical  parameters of 

the input function and the plant dynamics, the cr i ter ian for optimization 

being the smallest  mean square e r r o r  between the actual output and the 

desired output. 

cases  even a simple power-series device could give a smaller  mean 

square e r r o r  than the best linear compensator. 

An example was calculated to illustrate that in many 

The object of this report  is to extend the previous work to include 

The the case  where the compensator is a nonlinear device with storage. 

validity of this extension is based on the Wiener-Bose theory that a non- 

linear device with storage is equivalent to the cascade combination of an 

instantaneous nonlinear device and a linear device with storage elements. 

Wiener showed that any system can be regarded a s  a computer which 

performs a transformation on the past of i t s  input to yield the present 

output. 

integral can be used to obtain the present output f r o m  the past of the input. 

Hence, any linear system is characteriqed by its response to a unit im- 

pulse. Similarly any nonlinear system (with finite settling t ime) can be 

characterized by a linear network with multiple outputs cascaded with a 

nonlinear network with no memory of the past. This is justifiable because 

the l inear network serves  to characterize the past of the input and the 

nonlinear network operates on this information to yield the present output. 

2 

For the case where the transformation is linear, the convolution 

In this paper, a s  in the previous, i t  is assumed that the input data 

are sampled at regular intervals, the sampling ra te  being fixed in accord- 

ance with Shannon's sampling theorem, and then converted into a s ta i rcase 
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function by using a zero-order hold. This assumption is necessary in 

order to  overcome the mathematical intractability of the equations 

ar is ing out of the optimization of nonlinear systems subject to continuous 

random inputs . The dynamics of the plant are considered as known in 

te rms  of i ts  s ta i rcase P-response, and although it is not necessary, for  

the s a k e  of simplicity i t  has been assumed that the plant is time-invariant. 

The method developed is also applicable, with a slight modification, for 

the case where the plant dynamics are varying - -  slowly with time. 
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NONLINEAR STAIRCASE SYSTEMS WITH STORAGE 

The general nonlinear staircase system with storage may be 

represented by the block diagram shown in Figure 1, where L is a linear 

system of weighting functionw(7) and f [ ] is a no-memory nonlinear de- 

vice. 

*SC = Sampler a n d c l a m p  

Figure 1. A General Nonlinear Staircase System with Storage 

The output of the system a t  the k th sampling instant may be expressed 

as 5 

X ~ U ~ + X  u t *  + X  u 1 k-1 k o  

k 
= f  1 u x  s k-s  

s= 0 

( 2 . 0 1 )  

where 

x = x(rT)  r 

u = u(rT)  r 

= stai rcase P-response of L at  the k th sampling instant. 

In the particular case of a first-order system, belonging to Class 

N1 of Zadeh"?, i t  is permissible to represent i t  by the block diagram 



shown in Figure 2.  For this case, the s ta i rcase  output at  the k th  

sampling instant is given by 
k 

( 2 . 0 2 )  

r = O  

Figure 2. Storage Nonlinear Staircase System of First Order 

It may be noted that in deriving Equations (2.0 1) and (2 .  02) i t  has 

been assumed that the linear system is physically realizable, that is, for 

L the s ta i rcase P-response ordinate u does not exist for r less than 0. r 
A s  the optimizing equations for higher order  systems are con- 

siderably more involved, in this work only systems of the f i rs t  o rder  wi l l  

be considered. 



OPTIMIZATION OF ADAPTIVE SYSTEMS HAVING FIRST-ORDER 

I 

L 

NONLINEAR CONTROLLERS WITH STORAGE 

I\ 3- Y(t) 

The block diagram of a model-reference type adaptive control 

system is shown in Figure 3. 

transformation on the input signal so  that the output of the known plant 

corresponds as closely to the desired output as possible. 

this may be done a- co-mpi~ter is required, which would use the statist ical  

properties of the input, the desired output and the plant dynamics to cal-  

culate the optimum controller for a given index of performance. 

The controller" performs a suitable 

In order  that 

Controller -+ Plant 

? __I Computer 

2 -  sc -j, 
L 

- r Reference - 
Model 

Figure 3.  A Model Reference Adaptive Control System 

To render the problem more practicable, the form of the controller 

is first assumed, and then i ts  parameters a r e  calculated. 

one may consider a l inear controller, and calculate i ts  weighting function, 

w ( T ) ,  which wi?? give the least  mean-square error between the desired 

For  instance, 
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1 output and the actual output. It was shown that the staircase P- 

response ordinates, ur, of the optimum linear controller can be calculated 

by solving the following set of linear simultaneous equations: 

O U  + ( Y u  + ( Y u  + *  + a  u 
0 0  1 1  2 2  N N Z P o  

N - l U N  = '1 + O U  + * * * + a  
"lU0 + "OU1 1 2  

+ aN-2UN = P2 (Yu + O U  + ( Y u  + * - a  2 0  1 1  0 2  

. . . . . . . . . . . . . . . . . . . . . .  
u + 9 + (YOUN = 8, %JUo + (YN-lul + ON-2 2 

where 
N 

an( 

and 

r = O  

N 

(3.01) 

(3.02) 

(3.03) 

r= 0 

y(rT) = The staircase P-response ordinate of the plant at t = r T  

\- x(kT) x(k+r T )  

k= 0 

N - r  

#xz(rT) = - 1 1 x(kT) z(k+rT) N - r+l 
k= 0 

z (rT)  = the desired output at t = rT.  

(3.04) 

(3.05) 

(3.06) 

(3.07) 

(3. 08) 
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On the other hand, i f  the controller is a no-storage linear device 

efficient to be calculated, 

solving the following set  

C am 
m= 0 

f M 

r = O  

N - 

it 
of 

with input-output relationship characterized by 

M 

y ( rT)  = ak fk [  x(rT)] (3.09) 

k= 0 

where fk[  ] is a known nonlinear functional, and ak is an unknown co- 
1 

has been shownL that ak  can be obtained by 

l inear simultaneous equations : 

N - 
yryS Omj (f; r-s T) c 

s= 0 

= 1 y 4. (f; rT)  for j = 0, 1, 2, MJ 
r Jz 

r= 0 

where the nonlinear correlation ordinates 0 (f; r-s T)  and 

#j, (f; rT) a r e  defined a s  below: 
mj 

N-s 

p= 0 

for s > r 
N - r  

p= 0 

for s < r . 
and 

N-r  
1 

N - r + l  9. ( f ; rT)  = 
J Z  

(3.10) 

(3.11) 

(3.12) 

p= 0 

An important subclass of no-storage nonlinear devices character-  

ized by Equation (3.09) is the instantaneous power-series device the out- 
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put and input for  which are related by 

M 
k 

’I- = “kXr 
k= 0 

The optimum values of the coefficients a which will give the k 
lea’st mean square e r r o r  between the desired output and actual output 

are obtained by solving the following equations: 

. . . . . . . . . . . . . . . . . . .  
aMl a l  + aM2a2 + + aMMaM = P, 

N N where 

and 
N 
F 

(3. 13) 

(3. 14) 

(3 .15 )  

(3. 16) 

The nonlinear correlation functions in Equations (3. 15) and (3. 16)  

are defined as 

N- r  

(3.  17) 

and 
N-r  

(3. 18) 
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If the controller is assumed to be nonlinear with storage, i t  can 

be represented as the cascade combination of a l inear system L, of 

weighting function w(7) and an instantaneous nonlinear device, as shown 

in Figure 1. 

be considered as the cascade combination shown in Figure 2.  

that the controller is of the latter type, one would have to calculate the 

s ta i rcase P-response ordinates of the linear system L, as well as the 

mefficients, ar, of the instantaneous nonlinear system which wi l l  together 

yield the minimum mean square e r ro r  between the actual output and the 

desired output. In practice, however, this approach is not very fruitful 

as the optimizing equations get very involved. 

On the other hand a nonlinear system of the f i r s t  order  may 

Assuming 

An alternative approach, which consists of optimization in two 

steps, is much more practicable. 

of the optimum linear controller a r e  first calculated; and it is assumed 

the optimum nonlinear controller would consist of a cascade combination 

of an instantaneous nonlinear device and this optimum linear device, with 

the arrangement shown in Figure 2. Hence, after s ta i rcase P-response 

of L has  been obtained by using Equations (3 .  O l ) ,  these may be convolved 

with the s ta i rcase P-response ordinates of the plant, y (kT). 

of the convolution, v (kT), may now be used in place of y (kT) in Equations 

(3.  lo),  to obtain the coefficients a of the optimum instantaneous non- 

linear controller defined in Equation (3 .09) .  

The s ta i rcase P-response ordinates 

The resu l t  

k 

This procedure, therefore, gives a cascade combination of the 

optimum linear controller, preceded by a suitable instantaneous nonlinear 

device. 

combination will  be better than that of either of the components alone. 

It may be pointed out that, in general, the performance of this 
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EXAMPLE OF AN INPUT-SENSING NONLINEAR ADAPTIVE SYSTEM 

WITH STORAGE 

To compare the relative performances of the various types of 

controllers discussed in the previous section, an example of an input- 

sensing adaptive system may be taken. The plant is assumed time- 

invariant, and the desired output is taken as being equal to the input. The 
1 For this trans- (s i l j  (silo) ' transfer function of the plant may be taken as 

fer function, the s ta i rcase P-response ordinates a r e  given by 

Y (0) = 0 (4.01) 

(4.02) 
I 

I -0.1) -0. l(m-1) 1 -1 -(m-1) e - m ( l - e  ) e  
1 

y ( m T ) =  T(l - e  

I 
where the sampling interval, T=O. 1 second. 

The values of y (mT) were calculated for m = 0 to 10, and then 

used to calculate the plant correlation ordinates 0 
Equation (3.05). 

(mT),  as defined in 
YY 

These values are shown in the following table: 

0 

1 

2 

3 

4 

5 
6 

7 
8 

9 

10 

0 

0.003550058 

0.006983582 
0.0077065 1 1  

0.007483446 

0.006959068 

0.006365899 

0.005 7855 15 

0.005244299 

0.004748677 

0.004298045 

0.0003677154 

0.0003451441 

0.0003045481 

0.000259 1 1  12 

0.0002134002 

0.000 1688645 

0.000 125922 

0.000084902 

0.00004687384 

0.00001525831 

0 
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The random input to this plant is given below: 

m x(mT) 
0 1.05 

1 2.24 

2 2.41  

3 4.22 

4 3.76 

5 7.79 

, 6 9.96 

7 9.63 

8 8.96 

9 8.54 

10 5.86 

11 2.89 

12 6.36 

13 9.40 

14 1.04 

15 7.09 

16 5 .11  

17  2.40 

18 0.1 

19 5.22 

20  0. 71  

Using Equations (3.06) and (3. 17), various linear and nonlinear 

correlation ordinates may be calculated for an optimum power-series 

controller. These a r e  given on the following page. 
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m gXX(mT) 

0 28.05965 

1 25.07729 

2 24. 71797 

3 24. 79793 

4 22.69266 

5 18.94288 

6 17.26048 

7 17.203 13 

8 13. 17773 

9 13.28832 

10 13. 10950 

m 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

9 (mT) 
x x  

2 19.6037 

197.0056 

186.7973 

179.0746 

153.8706 

116.3172 

104. 1281 

105.4692 

73.66884 

83.44400 

97.70171 

2(mT) 
xx 

2 19.6037 

198. 1252 

189. 1206 

180. 1209 

155.2635 

124.2064 

107.4726 

97.5 1853 

65.90280 

64.52391 

60.03158 

9 2 2(mT) 
x x  

1846.516 

1648. 127 

1465.940 

1290.391 

983.8791 

665.3069 

564.8315 

525.0310 

302.3845 

376.3761 

452.493 1 

9 3(mT) 
xx 

1846.5 16 

1702.325 

1570.523 

1438.085 

1195.828 

942.3560 

789.5974 

647.2070 

410.3618 

365.3017 

3 12.8916 

9 2 3(mT) 
x x  

16181. 14 

14558.88 

12281.87 

10111.12 

7086.670 

45 10.9 10 

3704. 788 

3 103.490 

1635. 747 

1983.009 

2319.410 

16181.13 

15168.66 

13569.85 

1206 1.35 

9770.167 

7639.574 

6237.582 

463 1 .2  14 

2 788.240 

2 185.960 

1680.060 

9 2 4(mT) 
x x  

145557.3 

131758.5 

106252.6 

82926.19 

54457.12 

33139.45 

26241.93 

19568.34 

9704.249 

10846.79 

12090.70 

0 5(mT) 
xx 

145557.3 

137959.0 

120076.1 

104435.9 

8298 1.43 

64620. 73 

5 1638.22 

35085.48 

20112.11 

13654.41 

9 145.209 

9 2 5(mT) 
x x  

1332632.0 

1209639.0 

937139.6 

70 1059. 9 

4379 11.2 

257053.5 

195562. 1 

129526. 1 

61131.38 

60628.96 

6340 1.66 



m 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

m 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

4 (mT) 
x x  

1846.5 16 

1695.835 

1571.307 

1470.086 

12  13.977 

896.6653 

796,2246 

769. 7933 

538. 7424 

64 1.9400 

847. 1926 

4 (mT) 
x x  

16181.13 

15 187.66 

13908.55 

12846. 77 

10321.55 

7689.59 1 

6829.470 

6083.193 

4482. 192 

5458.967 

7728.486 

d 3 2(mT) 
x x  

16181.14 

14582.62 

12468.74 

10515.82 

7403.524 

4693.088 

4044.293 

3547.440 

1978.158 

2795.506 

3999.397 

QI 4 2(mT) 
x x  

145557.3 

132648.8 

11 1268.3 

91701.55 

61086. 71 

385 15.57 

34 13 7.43 

26492.93 

15646.03 

23361.83 

37002.38 

0 3 3(mT) 
x x  

145557.3 

130346.9 

104778.5 

81174.57 

50564. 74 

29049.83 

24872.83 

19831.48 

9806.000 

14282.33 

20446.34 

Q 4 3(mT) 
x x  

1332632.0 

1193013.0 

93715 1.9 

702263.3 

402 13 1.8 

226280.4 

205334.5 

144203.3 

74630.6 

117620.0 

189231. 7 

9 3 4(mT) 
x x  

1332632.0 

1186774.0 

905899.9 

654186.3 

368442.6 

194284.5 

1633 19.6 

117166.0 

52 782.42 

752 11.07 

10558.89 

9 4 4(mT) 
x x  

12353830.0 

10893270.0 

8099677.0 

5602791,O 

2817615.0 

1425607.0 

1303 135.0 

830448.8 

384156.2 

608655.0 

974485. 1 

13 

9 3 5("T) 
x x  

12353830.0 

10930490.0 

7966422.0 

5426584.0 

2814930.0 

1368588.0 

1114441.0 

714222. 7 

295692.8 

400616. 9 

546606. 1 

0 4 5(mT) 
x x  

115585600.0 

100456000.0 

71082890.0 

45946 190.0 

20683940.0 

9367056.0 

8480916.0 

4895162.0 

2025677.0 

3173124.0 

5024439.0 
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m 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
I 

4 (mT) 
x x  

145557.3 

13885 1.4 

126590.0 

116050.4 

91326.02 

69239.48 

0 I J J  I .  90 

50075.86 

39419. 12 

48920.23 

0 i nnrr 

10 71966.29 

X 
0 2(mT) 

K 

1332632.0 

1224971.0 

1020039,O 

829441.0 

529575.5 

339921.7 

3::9:4.3 

207040.1 

134080.8 

207725.1 

347839.4 

X 
9 
12353830.0 115585600.0 1089188000.0 

11061110.0 101182600.0 933765900.0 

8610405.0 74415720.0 652128300.0 

6331608.0 50266240.0 409715500.0 

3395568.0 231 13710.0 164597300.0 

1945815.0 11893250.0 75271180.0 

?87!665.0 1 !?502?0.0 75028990.9 

1106885 0 6304361.0 36696890.0 

629255. 7 3185603.0 16417940.0 

1038414.0 5327348.0 27482100.0 

1779816.0 9155225.0 47130420.0 

To calculate the optimum linear controller, first the values of the 

0 ’ s  and P I S ,  as defined in Equations (3.02) and (3.03) are calculated. 

These a r e  given below: 

= 0.04542239 

= 0.04224973 

= 0.03964489 

= 0.03660728 

= 0.03299484 

a5 = 0,02969728 

= 0.02736118 “6 
= 0.02522141 

= 0.02269131 

cy9 = 0.02127776 

“0 

“1 

“2 

“3 

“4 

“7 

“8 

“10 = 0.01943661 

8, = 1. 152355 

0, = 1.068070 

8, = 0.9735248 

8, = 0.8869045 

P4 = 0.8110975 

8, = 0. 7395363 

8, = 0.6725995 

8, = 0.6066298 

8, = 0.5523519 

8, = 0.4910136 

pl0 = 0.4187140 

Using these values of C Y ’ S  and P I S ,  the s ta i rcase P-response ordi- 

nates of the optimum linear controller a r e  calculated through Equations 

(3.01). These a r e  given on the following page. 
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u = 26.93844 

U = 4.234751 
0 

1 
2 

3 

4 
5 

6 

u = -4.883514 

U = -4.199415 

u' = 1. 128078 
u = 3.567722 
u = 0.6684761 

'J7 = -3,806203 

u = 4.625687 

LY = 1.321865 
8 

9 

10 u = -5.219115 

The mean square e r r o r  between the desired output and the actual 

output of the linear controller alone is used is given by 

- 10 

C urpr  - 9xx(0) = 6. 11438. 2 
E =  (4.03) 

r = O  

To calculate the nonlinear controller which should be connected in 

cascade with this optimum linear controller, the first step is to obtain the 

convolution of the s ta i rcase P-response of the l inear controller and the 

s ta i rcase  P-response of the plant using the relationship 

k 

1 UrYk+r v =  k (4.04) 

r= 0 

These values of v a r e  used to calculate the correlation function k 
for  the combination, and a r e  given below: 

k v(kT) Qvv(kT) 
0 0 0.2369704 

1 0.09563301 0.2004822 

2 0.203 1604 0. 1812449 



3 

4 

5 

6 

7 

8 

9 

10 

0.2 198356 

0.1852145 

0. 1562003 

0. 1525930 

0. 1533819 

0.1325538 

-0.003237093 

0. 1229974 

0. 1504768 

0. 1224713 

0.09350676 

0.06366732 

0.03905807 

0.02467862 

0.01176261 

0.00000 

F r o m  these values, the at s and s for the power-series controller 

These are given a r e  calculated, a s  defined in Equations (3. 15) and (3. 16). 

below: 

2797.805 - 
“31 - 
“32 - 

339. 1764 - 
“21 - 

“22 - 

- . 46.73314 

21012. 72 - 2520.276 - 
9 1  - 
“12 - .34 1.. 5 754 - 

“13 = 2771.327 “2 3 = 21012.72 “33 = 172522.6 

“14 = 23632.29 = 185515.6 “34 = 1477812.0 

= 12998280.0 “15 “35 = 1687022.0 “2 5 = 207806.7 

221201.6 P, = 28.62 194 - 
“51 - 

“52 - 

24492.86 - 
“41 - 

“42 - 1687022.0 P2 = 196.4032 - 185515.6 

= 1563037.0 

= 13138380.0 

“45 = 115719200.0 

- 

= 13965200.0 P3 = 1582.595 

= 133686600.0 P4 = 
13717.33 

1 

“5 3 

“54 

“43 

“44 
“5 5 = 1060478000.0 P 5 = 123298.6 

Finally, solving Equation (3. 14) for the optimum coefficients of the 

power ser ies ,  the following values a re  obtained: 
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a = 4.114004 

a = -0 .8714087 

a = -0.000697533 

a = -0.00005014564 

1 

2 

3 

4 

5 a = 0.0006597933 

The mean-square e r r o r  between the desired output and actual 

output for the combination of the power-series controller and the linear 

controller is given by 
5 

G 2 = dzz(0) - anpn = 1 .90  (4 .05 )  

n= 1 

For comparison, a power-series controller without storage may 

be calculated for the same plant and input signal. 

coefficients a r e  found to be 

In this case the optimum 

= 105.5193 a- 1 
a-2 = -22 .97353 

a =  -0.01269078 

a =  -0.000888 152 

a =  0 . 0  1752 794 

and the mean square e r r o r  is found to be 2.15 .  

3 

4 

5 
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C ONC LUSION 

This example shows that a nonlinear controller with storage gives 

a performance much better than that of a linear controller, o r  a nonlinear 

controller with storage. 

of higher order  is more involved, this work has been limited to  considering 

nonlinear systems of first order only. But, even with these, considerable 

improvements in performance of the controller is obtained. 

that the computations can be carr ied out in a very short  time, and the 

parameters  adjusted immediately afterwards. In the ideal case,  all this 

should not take more than one sampling interval, but the technique would 

still be valid i f  the statistics of the input and the plant dynamics vary slowly 

with time. 

A s  the calculation of nonlinear storage systems 

It is assumed 
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